© 2002 JetBrains, Inc. All rights 1€SETVEd. .....ccevviiiiiiiiiiieeiiie et 1

ACKNOWIEAZEMENLS........eiiiiiiiiiiiiiiiie et e e e ettt e e ettt e e e e ntbeee e e ntbaeeeennbaeeeennnees 3
ADOUL IDE ALttt ettt ettt ettt et ab e e bt et e e e enee 3
Why Read ThiS OVEIVIEW? ....ccciiuiiiiiiiiiiiiie ettt et te e et te e e ettt e e e sttt e e e sebaeeeeesbaaeesennsseeesennees 3
Editor INtrOAUCTION . ......eiiiiiiiiiii et et ettt ettt e e e 3
COAE COMPLELIONS.....euiiiiieeeiiiieeeeitie e e ettt e e e ettt e e e ettt e e e eetaeeeeenbbeeeeenasseeesanssseeesannsseeesannsneeeens 4
IMPOTE ASSISEANT .....eeiieiiiiieeeiiiiie e ettt e ettt e e ettt e e ettt e e e ettt e e e e atbeeeeesasbeeesensbeeesensbeeeeannsnaeeeas 6
LAVE T@MPLALES ....eveiiieiiiieeeeie ettt e ettt e e e ettt e e e etbe e e e e s asbaeeeesnsbeeeeensaaeeans 8
SArChing fOr USAZES. ... eeeeiiiiiieeiiiiiie ettt ettt e e et e e et e e e e stbe e e e e stbeeeeenatbeeeeenasaeaeeas 10
Code Layout MANaZET ......cccouviiieeeiiiieeeeiieeeeeiie e e e ettt ee e e et eeeesibaeeeesntbaeeeesnaseeeeennsseeesennsseeens 12
OPHMIZE TMPOTES ..eiieiiiiiieeeiiie ettt e e ettt e e ettt e e ettt e e e e bbeee e e ebbaeeeessbaeeeeenssaeeeeanssaeeesnnnseaeens 13
INEENEION ACTIONS. . .uiiieiiiiiie e ettt ettt e e ettt e e ettt e e e ettt e e e stbteeeesatbbeeeesasbeeeeenasbeeeeennsseeeeannnnees 14
Opening Class by its ShOrt NAME .......cooiuiiiiiiiiiiiee et e e e 14
DIEDUZZING ....veieeiiiiiiee ettt ettt e e e ettt e e e ettt e e e esataeeeeesabbeeesensbeeeeennsbeeeeennsseeeennees 14
Lo T (S0 BT o Tt or o) o BT PPUR 15
What i8S ReTACOTING?....cciiiiiiieieiiiee ettt ettt e e ettt e e ettt e e e et e e e e ensaeee e e nnnees 18
RENAMING......eiiiiiiiiiie ettt e ettt e e e ettt e e e eata e e e e easbeeeeenntbeeeeenasaeeeeeennnees 18
IMIOVE .ottt et e ettt e e bt e e ettt e ettt e e s et e e e e nanaes 19
INtroduce Variable............ooiuiiiiiiiiiie e e 23
Extract INterface / SUPEICLASS .....ccoouviiiiiiiiiiie et ettt e e e 25
EXEract MEEHOM ...cooueiiiiiiieeiiiece e ettt 26
ININE METROM......eiiiiiiiiie ettt sbe e st esaaeees 27
Encapsulate Field ........ccouiiiiiiiiiiee et e 28
Change Method Si@NAtUre ..........cocuiiiiiiiiiiie ettt e e et e e e et e e e e baeeeeenaeeeeas 29
J2EE INErOQUCTION ..ceeiiiieiiiiie ittt ettt et e sb e st e st e st e snteesbaeeeas 29
JSP DevelopmEnt SUPPOTL.......vuiiieiiiiiieeeiiiiee e ettt e e ettt e e esbteeeeeibteeeessebbeeeeesbaaeeeensaeeeeesnees 30
XML Development FEAtUIES ........cccoiiiiiiiiiiiiiie ettt ettt e e et eeesaaeeeeeeraeeeeenes 31
L B 3§01 174 18T ) 1 PRSP 32
Collaboration TOOIS .....ccouiiiiiiiiiiiie ettt et st e s e s e e 33
CVS TNEEGTALION ...eeeeeiiiiieeeiiiee e ettt e e ettt e e ettt e e e ettt e e e eabaeeeeeabaeeesannsaeeesannsaeeesanssneeseannsaeens 33
JAKATEA ANE....ooiiiiiiiiii e ettt e s as 35
JUDIE ce e ettt ettt ettt e sttt e et e et e et e e bt e e et e e et e e saaeeas 36
JHKES ottt e et e et e e bt e e e e et eenaaaees 37
ViSUAL SOUICESATE ......eiiiiiiiiiiii et 38
10315 1 1. o PP PUPPR R RSPPPP 39

© 2002 JetBrains, Inc. All rights reserved.

JetBrains, Inc., JetBrains, IntelliJ, IDEA, and IntelliJ Labs are either registered trademarks or
trademarks of JetBrains, Inc., s.r.0. in the Czech Republic and in other countries. The names of
actual companies and products mentioned herein may be the trademarks of their respective
owners.

Information in this document is subject to change without notice. JetBrains, Inc. makes no
warranties, neither expressed nor implied, in this document. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording or otherwise), or for any purpose, without the express written permission of JetBrains,
Inc.



Klanova 9/506
147 00 Prague
Czech Republic
Phone: +7 (812) 380-1641
Fax: +7 (812) 380-1643

WEBSITE:
www.intellij.com

DEVELOPER’S NETWORK:
www.intellij.org

INTELLIJ TECHNOLOGY NETWORK:
www.intellij.net




Acknowledgements

Big thanks to the IDEA development team for helping the writers put this overview together.

Special thanks to all of the community members who gave us suggestions and constructive
feedback, including but not limited to: [Community member names]

About IDEA

IDEA is an industry leading Java IDE power packed with the most up-to-date development
features including, but not limited to: industry setting refactoring support, super intelligent code
editing assistance, a wide range of J2EE development features for rapid web-application
development, a powerful Code-Inspection tool, integrated CVS, an Open API for third-party
development support, and a mountain of other productivity features for Java developers that are
second to none.

This overview was written to better inform users about IDEA’s powerful and user friendly
features and functions giving them a better understanding of what kind of performance
enhancing features IDEA is capable of bestowing upon its users.

Why Read This Overview?

IDEA 3.0 Overview was written for people who are interested in IDEA, be they developers,
project managers, architects, or even sales staff — who wish to accelerate their learning curve in
regards to the powerful features and functions under IDEA’s hood without getting into the type
of detail that may normally cause sudden drowsiness and put you to sleep.

This book assumes you have some understanding of the fundamentals Java; it is not necessary
for you to have an expert, up-to-date, edge of your seat understanding of all Java based or
centered technologies. IDEA is user friendly, and will make an excellent companion in all future
undertakings whether you are an advanced Java developer or a new student of Java. This
overview hopes to be as friendly.

In conclusion, we believe that IDEA is the world’s preeminent Java IDE. We hope that this
overview will help us further that claim in your eyes. However, we also know that despite all of
the talk at the end of the day, it will be IDEA’s deeds and not this overview’s words — Acta non
verba — that matter when it comes to influencing you to use IDEA. Therefore, you are both
highly encouraged — and triple-dog dared — to give IDEA a few minutes of your time for it to
impress upon you its numerous productivity features that will turn you into an efficient coding
machine. After all, what do you have to lose besides your old IDE?

Editor Introduction


rb
fundamentals of Java

rb
Is this really a proverb? Or did you make it up somehow? "cutting edge" or "bleeding edge" seems to make more sense. 

rb
As friendly as what? IDEA? This sentence does not fit in here.

rb
The rest of this section is in fact doing it - putting me to sleep. It's only advertising. You use very strong words here to hammer it into anyone's head that IDEA is the one and only IDE. Such texts make me suspicious. If they try to convince you there sure is a hole in it.
You don't need to do it. You have the rest of this document to show how cool IDEA is. Cut down the advertising at the beginning and let the people come at their own to the conclusion that IDEA is the one and only IDE they want to develop with

rb
accelerate their learning curve in
regards to the powerful features and functions under IDEA’s hood without

rb
Oh no! If I knew it earlier that the goal of IDEA is to convert me into a coding machine, I would never have bought a license :)
Don't do it. I think few software developers want to be coding machines. We are still human beings. 


I want you to think for a moment about the different philosophies behind building Ferraris and
Ford Escorts. Ferraris are put together by hand, take days to build, and they incorporate the
newest technology available for their specific function (racing). On the other hand, Ford Escorts
are made on an assembly line where computers and automated machines do most of the building
with limited human intervention, and hundreds can be made each day.

Now, imagine if it were possible to make a Ferrari as quick and as easy as an Escort, and all the
while surpassing the quality of a hand made model. Now, this might be a terrible analogy, but
the premise is quite clear: IDEA helps you make “Ferrari” like applications in the time one
would make an “Escort” like application. In other words, IDEA dramatically increases your
productivity level while demanding from you less routine and repetitive tasks.

IDEA’s mantra is summed up in two words: Intelligence and Usability. The following sub-
sections will cover many of IDEA’s editor features to give you a better understanding of why
IDEA has become the de facto industry leader in IDE innovation.

Code Completions

No matter the size or scope of the project you are working on, it is a basic fact of life that basic
“grunt” work has to be completed on each project before you can enjoy the fruits of your labor
and hard work. IDEA was constructed to help speed up development by lending a virtual third
hand in completing such annoying yet fundamental task like typing code and remembering
statements. IDEA cannot read your mind, but it can come pretty close: It is armed with today’s
most powerful multiple code completion features in the Java world to date that aid you in
hammering out code without breaking a sweat.

Seasoned Java programmers will notice a remarkable improvement in project completion time;
you will spend less time typing and more time thinking and designing. Junior and entry-level
programmers will benefit too, because IDEA will help select the correct Java code selections
required to complete various Java syntax, giving you more confidence in your developing
technique and improving your overall understanding of Java.

IDEA comes equipped with 3 different types of code completion features to help you speed up
your coding tasks: Basic, Smart-Type, Class Name.

Basic (Ctrl + Space)
IDEA’s Basic code completion feature helps you complete a variety of simple but time

consuming coding task. As shown in figures Code Completions 1.1 and 1.2, you can invoke this
completion feature to complete basic Java syntax.

10 public clas=s BasicCodeCompletion gl !

11 Code Completions 1.1

10 public clas=s BasicCodeCompletion extemflsAJ{

11

1z

12 ; Code Completions 1.2



rb
That is a strange figure numbering. Give the chapters and sections numbers. Than you can have figure 1.2, 4.4 or what ever. It's more natural this way.
BTW: Having page numbers would also be nice. When you print out the document the toc is useless because of the lack of page numbers


As shown in figures Code Completions 1.3, the Basic code completion feature will also allow
you to quickly access and insert any Java class, method, and varible from any package that has
been imported or is being utilized else where in the project prior to invoking this function.

10 import Javax.swing. ¥;

11

12 pubhlic class BasicCodeCompletion extends JPanel {

13

14 = public woid createButton() {

15

16 JEutton samplebButton = new JEuttoni) !

17 sampleButton. add.AL

18 ; @ B addiactionlistener (Actionlistener 1)

12 ; m & addincestorlistener(incestorlistener listener) void
Code

Completions 1.3
addActionListener method implementation from javax.swing.* package

Smart-Type (Ctrl + Shift + Space)

IDEA’s Smart-Type code completion functionality helps users select the correct data types to
implement in relevant locations depending on what has already been written in the code. For
example, as shown in figures Code Compleitons 1.4, when the Smart-Type completion feature is
invoked, a pop-up with appropriate selections (in this example, only one to choose from) appears
ready to implement the selected item.

10 import javax.swing.¥;
11
12 public class SmartTypeConpletion extends JPanel |
13
14 = public void createButton(] {
15
16 JEButton sampleButton = new JButtoni():
17 sanpleButton. addactionlistener inﬂWJ] :
15 3
19 3
Code

Completions 1.4

Once the desired item from the pop-up has been selected, IDEA will automatically implement it
with all of its correponding componets as shown in figure Code Completions 1.5.



10 Fimport javax.swing.*:

11 import java.awt.event.ActionlListener:

12 import java.awt.event.ActionEwvent:

13

14 public class JmartTypeCompletion extends JPanel |

15

16 = public wvoid createButtonil {

17

12 JButton sampleButton = mew JButton():

14a sampleButton. addictionlistener (new Actionlistener() !

20 tr public void actionPerformed(ictionEwent e) d

21 1

oz Yiz

23 L 3

24 ' .
Code Completions 1.5

Class Name (Ctrl + Alt + Space)

IDEA‘s Class Name completion feature as shown in figures Code Completions 1.6 and 1.7
makes it easy to automatically suggest and implement the name of any class (and its
corresponding import, if needed) anywhere in any project or library. (Basic code completion,
on the other hand, utilizes only imported packages or those being resolvable in the current
scope).

11 public class ClassNameConpletion extends JPl{N

JPanel [jawvax.swing)
JPasswordField
JPEGCodec
JPEGDecodeParam
JPEGEncodeParam
JPEGHUE fnanTahle
JPEGInageDecoder
JPEGInageDecoder
JPEGInagelecoder Inpl
JPEGInageEncoder

Ln".'

B =0 & =G == BE]

FFEFEEF R E

JPEGInageEncoderInpl il

Code Completions 1.6
List of selectable classes in pop-up after Class Name code completion function has been invoked

10 import Jjavad.swing. ¥ :
11
12 public class ClassNameCompletion extends JPanEll{N

Code Completion 1.7

JPanel is implmented along with its required import package javax.swing. *

Import Assistant

In the beginning, there was nothing! Those of us who started programming Java in notepad
(Java pre-history for you newbies) or some other primitive editor will really appreciate IDEA’s



import assistant features that practically do everything for you. No longer will you have to
memorize every import statement that ever came into fiat. When coding with IDEA, the
intelligence of its import assistant is going to impress you: start typing code, and once you input
a Java class short name (for example: JFrame), the import assistant will automatically launch a
pop-up suggesting for you to import the relevant corresponding Java class:

i
]
10

11 @ javax.swing. JFranme? Alt+Enter ‘
12 public class LiwveTenplates extends JFra.meI {

13

Import Assistant 1.1

However, IDEA will not only make a suggestion, but it will enable you to actually import the
suggested Java class with one stroke of the keyboard. In figure Import Assistant 1.1, you will
notice that IDEA has identified the Java class short name lacking an import statement and has
offered to import the corresponding class by pressing Alt + Enter on the keyboard.

g
9

10 import Jjawvax.swing.*: I
11

1z public class LiwveTemplates extends JFrame !
13

Import Assistant 1.2

After selecting Alt + Enter on the keyboard, the statement is imported, the pop-up disappears,
and the red text on JFrame (highlighting feature) vanishes. Just put this into perspective: this is
all done without your caret position moving!

The import assistant also works when importing large blocks of code. For example, if you
“copy” a block of code from one project file, and you paste this block of code into another
project file, the import assistant will also prompt you for permission to import the relevant Java
classes that are lacking in the target class/interface. In figures Import Assistant 1.3, 1.4, 1.5, you
can see the copy and paste process in action.

10 import Javax.swing. *;

11

12 public class OneProject extends JFrame |
13

14 JEutton butLine = null;

15 JEutton butRectangle = null:;
16 JEButton butCircle = null:
17 JToolBar myToolBar = null:

Import Assistant 1.3

Copying from one project



11

12 public class NewProject |

13

14 JButton butline = null:;

15 JButton butBectangle = null;

16 JButton butfircle = null:;

17

PN © ccicciClosses totmpore
19

The code fragment which you hawve pasted uses classes
that are not accessible by imports in the new context.
Select classes that you want to import to the new file.

C) jawvax. swing. JEutton

Import Assistant 1.4

Pasting into new project

10 import javax.swing. ¥ :;

11

12 public class NewProject |

13

14 JButton butLine = null:;

15 JButton butRectangle = null;

16 JButton butfircle = null:;

17 Import Assistant 1.5

Missing class is imported

No doubt this was a simple example; however, just imagine how useful this feature is going to be
when your project manager starts pushing to speed things up.

Live Templates

IDEA is the ideal IDE for rapid development. It incorporates an advanced Live Templates
technology that enables developers to input lines of code constructs by short name that inputs
evaluated expressions and type casts all with one key-stroke. Coding has never been faster or
easier! As shown in figure Live Templates 1.1, you only need to type the short name to invoke
the code template.

public woid actionPerformediictionEvent e) {
Sout_

@

Live Templates 1.1

Short name template “sout” being initiated

After the short name has been typed, select the Tab* key, and the entire statement will be
imported into the source code as shown in figure Live Templates 1.2.

public void actionPerformediictionEvent e) |
System.ont.println ("I' 18

Live Templates 1.2

Tab is selected, and the live template is imported


rb
This sounds strange and doesn't read very well.

rb
Well, normally I press a key and select elements on the screen with the mouse.


The entire live template index can be accessed by selecting Code | Insert Live Template on the
main tool bar or by pressing Ctrl + J on the keyboard as shown in figure Live Templates 1.3.
You will notice that if you begin typing, the menu will adjust according to the first known
characters you input, allowing you to narrow down your choices quickly.

13 public class LiveTemplates extends JFrame |
14
15
1a = public LiveTemplates(3tring title) |
17 super (title) ;
15
132 JPanel pane = [(JPanel) getContentPanei);
20 Vector v = mew Vector():
21 v, add ("Boats") ;
Za v, add (" Cars" ) ;
23 v,add ("Trains") ;
24
25 it
26 ital Iterate elements of jawva.util.ArraylList
27 L itar Iterate elements of array
4% itco Iterate elements of jawva.util.Collection
22 } iten Iterate jawva.util.Enumeration
30 itit Iterate jawva.util.Iterator

ittok Iterate tokens from String

Iterate elements of java.util.¥
Live

Templates 1.3
Ctrl + J brings up the live template index

When an item in the index is selected, the corresponding template is implemented as shown in
Live Templates 1.4

13 public class LiveTewmplates extends JFrame {
14
15
16 = public LiveTemplates(3tring title) |
17 super(title);
15
19 JPanel pane = [JPanel) getContentPane():
20 Vector v = new Vector():
21 v.add|"Boat=z") ;
2z v, add("Cars" ] ; E:J
23 v.add("Trains");
24
20 for (int ! =0; 1< w.zgize(): i++) {
26 ACring = = [(3tring) w.elementdtii):;
27
28 3
Live Templates 1.4

Depending on your project’s requirements, you can edit the existing live templates or add more
templates to the index by creating your own. To call up the Live Templates editor, select
Options | Live Templates on the main menu toolbar. Once you have brought up the Live
Template list, you can select the Live Template you wish to edit or add a new one. The process
is pretty straight forward. See figures Live Templates 1.5.


rb
It's only one of them, so : figure

rb
This example is not clear enough. It does not show how dynamic live templates are.
One of the cool features for this template is, that it dynamically recognizes when i is already in use - for example in an enclosing for construct - and then takes the next free one - j.


L Live Templates

Abbreviation Description [ Group | Active

rrayList new java,util, ArrayLisk() collections [w]
HashMap new java,util, Hashiap collections [w]
Hashset new java,util.Hashet) collections [w]
LinkedList new java,util, LinkedList) collections [w]
TreeMap new java,ukil, TreeMap() raollections [w]
Treeset new java.util. TreeSet() collections [w]
= Tag pair htrnlfzml [w]
|ital Iterate elements of java.util, ArravList iterations [w]
|itar Iterate elements of array iterations [w]
|itu:n Iterate elements of java.util. Collection iterations [w]
Iiten Iterate java.util. Enumeration iterations [w]
|itit Iterate java.util, Iberator iterations [w]
|ittok Iterate tokens From String iterations [w]
|itve Iterate elements of java.util Vector iterations [w]
|ritar Iterate elements of array in reverse order iterations [w]
finst Checks object type with instanceof and down-casts it other [w]
Ist Fetches last element of an array other [w]
rr Sets lesser value to a variable other [w]
i Sets greater value to a variable other [w]
psvm maing ) method declaration other [w]
toar Stores elements of java.util. Collection into array other [w]
Serr Prints a skring ko Syskem.err oukput [w]
ok Prinks a skring ko Svskenn, ouk oukput [w]
soukmm Prints current class and method names to Syskem,out oukput [w] -

FY
=
1 [¥]

By default expand with Tab W

O, || Cancel || Help |

Live

Templates 1.5
Live Templates editing / adding p

* Tab is the default key for initiating this function. However, you can use any key you wish to use if you change the default key layout setting.
See the Key Mapper section for more information.

Searching for Usages

Anyone who has worked on a large development project knows that when you want to find a
specific class, method, field, or variable in a project, finding it in a sea of code is half the battle;
determining the functionality of those corresponding classes, methods, fields, or variables in the
code is another battle all in itself. IDEA’s

Search for Usages function was designed to strengthen the ability of developers to quickly hunt
down sought out item usages. When the usage search function is invoked, usage results are
displayed in an easy to read navigational tree for easy item access.

As shown in figure Searching for Usages 1.1, any item in a project can be searched in order to
find out where that item is being used.


rb
That's a bit short. You maybe should mention the edit window, the usage of variables and probably also the surround with templates


9
10 private static final String AUTHOR_WORD = "author": Ij Find Usages 5[
11
1z = public static Zcring getDescription(ftring[] authors Field AUTHOR_WORD of class Booklet
13 ftringBuffer buffer = new StringBuffer(): Dptians
14 buffer.append({title); buffer.append(", "j: [v]iSkip results tab with one usage:
15 buffer.append (authors.length == 1 » AUTHOR NORD ;
16 buffer.append (" category:"); buffer.append|getla |:| Open in new tab
17 return buffer. toftring()
13 ) | —\ Find I | Cancel ‘ | Help
19 =

Searching for Usages 1.1
The project item “AUTHOR_WORD” is being searched.

As noted above, all results are viewable in an easy to navigate tree panel as shown in figure
Searching for Usages 1.2.

a
10 private static final 5tring AUTHOR_WORD = "author':
11
12 =] public static Scring getDescription(ftring[] authors, String title, int category) |
13 StringBuffer buffer = new StringBuffer():
14 buffer.append(title); buffer.append(", "]:
15 buffer.append{authors.length == 1 ? AVTHOR FORD : toPlural (AUTHOR FORD) ) ;
16 buffer.append(" category:"):; buffer.append|getfategory(category))
17 return buffer. colitringi);
14 % Find - Usages of AUTHOR_WORD
13 b = [ Field
20 - £ 4, AUTHOR _WORD: String of class move. members, Booklet
al X = |5 Found usages { 2 usages in 1 file )
22 + 5} [ | move.members { 2 usages in 1 fle )
23 = Booklet.java { = usages |
24 + [ +xi(15, 451 buFfer, appendiauthors.length == 1 7 AUTHOR WORD : koPluralf AUTHOR, WORD:
2z El == +4x (15, 63 buffer, appendiauthors. length == 1 ¥ AUTHOR_WORD : toPlurall AUTHOR _WORD));
26 = =
21 @ &
28
29
30
3l
32
33
24 | Usages of AUTHOR_WORD Searching for

Usages 1.2
Navigational tree with results

When a searched result is selected in the navigational tree, the caret is transported to the actual
item location in the source code with a simple double-click, as shown in figure Searching for
Usages 1.3.


rb
This code looks really buggy because of the red marking. If you don't want to show IDEA's error marking feature explicitely, then don't do it implicitely. It gives the impression that IDEA has some serious bugs. An IDE that does not know String and StringBuffer cannot be useful, can it?


a
10 private static final 5tring AUTHOR_WORD = "author":
11
1z = public static String getDescription(itring[] authors, String title, int category) |
13 GtringBuffer buffer = new StringBuffer():
14 buffer.appendititle); buffer.append(", ")
15 buffer.append{authors.length == 1 = bmm_m : toPlural (AUTHOR WORD) ) :
16 buffer.append(" category:"); buffer.appendgetCategory(cateqory) ) ;
17 return buffer.toitring():
18
1 = [ Field
20 - £ 4, AUTHOR_WORD:String of class move members.Booklet
2l X = |5 Found usages { Z usages in 1 file )
22 %+ =} [= | move.members { 2 usages in 1 fils )
23 = Booklet.java | 2 usages )
24 3 [mj] +:i15, 45) buffer, appendiauthars,length == 1 7 AUTHOR _WORD : toPlural{ ALUTHOR WORD
25 H = + (15, 68) buffer. append(authars.length == 1 ? AUTHOR_WORD : toPlural(AUTHOR _WORD));
26 = -
27 | @ &
28
29
30
31
32
33
21 | Usages of AUTHOR_WORD | _
Searching for Usages

1.3
Navigational tree item location returned to source code

In addition to this generic usage search, IDEA also enables users to search for specific element
types by incorporating a diverse array of search options and filters. The Search for Usage
feature will search not only code in the immediate editor window, but you can also enable it to
search an entire project. @

Code Layout Manager

Have you ever looked at someone’s code, and thought to yourself, “What the heck is going on in
this code?” Well, you are not alone. It is a well known fact that if source code is organized in a
chaotic way, future development or additions to that same source code could become a daunting
and time consuming task. IDEA is the perfect tool for creating, optimizing, controlling, and
directing a uniform approach to code development layout.

yublic class EBEookletEditor extends JDialog {
JTextField nyNameField:

oo -1 hon

10
11
1z )
13 setEn = 0);
14 I
15
16
17

Code Layout Manager 1.1

Select the block of code you want to format

Utilizing this powerful feature is initiated at the touch of a key. As shown in figure Code Layout
Manager 1.1, you only have to highlight the block of code you wish to format and then select


rb
Perhaps you should also mentiion that usages can be found in libraries and not only in the projects own files and that there is a "highlight usages in file" feature.


Ctrl + Alt + L (or from the menu 7ools | Reformat Code). Depending on your layout
preference, the code is automatically arranged as shown in figure Code Layout Manager 1.2.

5 public class EBookletEditor extends JDialog
& JTextField nyNameField;

7 JEutton mylEButton;

g

9 = private String getEnteredNamer()] !

10 return myHameField. getText() ;

11 3

iz W

13 = public String getBookletName () |

14 return getEnterediame () ;

15 3

16

17 = private wvoid wvalidateOEButtoni) !

15 mylEButton. setEnabled |getEnteredilane () . length() > 0);
19 3

20

21 = public woid usage (] {

22 validateOEButtoni() ;

23 3

za |

23 Code Layout Manager 1.2

IDEA’s default code layout reformatting result

In addition to highlighting individual blocks of code, the code layout feature also allows you to
format entire classes and even entire projects all at the stroke of a key. If you are a project
manager, you can even export your particular style preference to everyone in your team via
email!

Optimize Imports

In addition to the code layout manager function, another great tool for tidying up code in IDEA
is the optimize imports feature. The optimize imports function searches for and removes
redundant and unused imports that have a tendency to turn readable code into the exact opposite.

As shown in figure Optimize Imports 1.1, there are three “grayed-out” imports that are not
currently being used by the open project (they may have been being used, but not now). Simply
select the Optimize Imports function (menu Tools | Optimize Imports or Ctrl + Alt + O) and
these imports will be removed as shown in Optimize Imports 1.2

Q BHimport java.awt.*;
10 import Jjava.bean=.%:
11 import Jjava.io. ¥}
12
13 public class OptimizeImports |
14
15 = OptimizeIuports(] |
16
17 b -
Optimize Imports 1.1

Three grayed out imports to be removed



10

11 public class OptimizeImports
12

13 B OptimizeImports()

14

15 i

Optimize Imports 1.2

Three grayed out imports have been removed

Intention Actions

Currently Under The Knife

Opening Class by its Short Name

In large projects with multiple classes, it has been up until now quite the norm to access
individual classes within a project by selecting the “Open Class” option somewhere in the main
toolbar menu. However, this process has now been streamlined. IDEA ensures that you no
longer have to close the window of one class to open up another, nor take your hands off the
keyboard for that matter.

Simply select Ctrl + N, and once you start to enter the first letter of the sought out class, IDEA
with dynamically begin to shave down your choices. Once your choice has been selected, the
desired class will be viewable in the source code editor panel.

Enter class name: {[_| Include non-project classes )

gl

CE [moving.b)

C) BookIndex [mowing. o)
C) Booklet

C) Booknark [mowrineg)

Opening Class by its Short Name 1.1

Class search by short name

Debugging

One of the most widely used and developer important feature in any IDE is a fast working and
effective debugger. When one is confronted with an unconventional or unplanned code result, it
is this fundamental feature that we turn to most. This is why IDEA has integrated a JPDA-based
debugger that is both extremely fast and easy to use.


rb
"it has up until now been quite..." sounds better to me, but since I'm not a native English speaker, I'm not sure which one is the correct one.

rb
Sounds strange to me. Say only "important feature" or something.

rb
mostly


11 public woid actionPerformed{ictionEvent e) |
Object source = e.getiourceif);
(] if [zource == huttom] {
Gysten. out.println("Privet!" ) ;
'
S* 0 IF {source == buttonz) |
Syatem. out. printin " Dobry den!™);

l

Debug - Booklet

&* L3 | Cnnsule" Threads| Frame |Watches |
» 5 B

e"-* lE}The applicatian is running

i
Lr
x
?

Debugging 1.1
User friendly debugging control console

As figure Debugging 1.1 shows, IDEA’s debugger incorporates a very friendly user interface
that allows you to quickly hunt down and debug code errors should they arise. You can select an
entire class file, block of code, or just single lines of code to observe during the debugging
process, and you can access the debugger’s output in an easy to read tree-view event window as
shown in figure Debugging 1.2.

public Booklet(3tring title) {
super (title]:
JPanel pane = (JPanel)] getContentPanei):

button = new JEutton("Hello in Russian'):
button. addictionlistener (this) ;
pane.add(button, BorderLayout.REST) ;
set3ize(l00, 100);:

button? = new JEutton ["Hew Usage'):

textareal = new Textirea("Testing"):
textareal.addTextlistener (this) ;
textareal. addEeylistener (this) ;
pane.add(textareal, BorderLayout.CENTER) ;

44

Debug - Booklet

& Console" Threads | Frame |Watches |

b & =init=(:35, Booklet

D, this = {Booklet@322}

2y title: java.lang.Stiing = "Yet Another Swing Application by David!"
"~k|pane:javax.swing.JPaneI:{javax.swing.JPaneI@324}|

+1
Lale)

1 od

L a1
1
-

Debugging 1.2

Code Inspection

If after reading the previous section left the impression that IDEA’s editor features simulated a
second set of hands, then it might be said that after using IDEA’s powerful Code Inspection
feature, you will be of the opinion that it is your second pair of eyes and your second brain. This
powerful code inspecting tool analyzes your source code for irregularities and informs you when


rb
"If the previous section left" sounds better. If you insist in this "after reading", you'll have to restructure the whole sentence.


your source code’s design logic is “fuzzy.” It has the ability to notify you when and where you
have unassociated, unused, and redundant classes, interfaces, methods, and fields.

In addition to this design verification function, the Code Inspection feature is equipped with a
powerful code implementation validation tool that reports where run-time exceptions might arise
based upon certain conditions, varying from whether or not certain expressions have their
execution results used or if execution flow never reaches certain statements.

To get a taste of how powerful and useful the code inspection feature is, please take a look at the
source code in figure Code Inspection 1.1. On line 29 we have commented out and noted a
deliberate error we have thrown in the source code.

18 Bl private class MyEevListener extends Eevidapter |

19 |

20 to B public void kevyTyped(EKeyEwvent e)

21 int keyCode = e.getKeyCode():

22

23 if (keyCode == FeyEvent. T F1) {

Z4 showHelpi();

25 i

26 else if (keyCode == EeyEvent.UH FZ) |

27 savelurrentFile():

28 3

Z9 else if (keyCode == KeyEvent.Il"K_FIh { /7 Error here. Should be FeyEvent. VE F3
30 openlNewFile () ;

31 i

32 elsze if (keyCode == HeyEvent.UK F2) |

33 closeCurrentFile() ;

G4 i

3 = ' Code

Inspection 1.1
Example source code with conditional error

Now, we invoke the Code Inspection control panel and select our desired analyze and search
criteria as shown in figure Code Inspection 1.2, and then run the Code Inspection function.



FInspections

[] Unused declaration
= [] peclaration Redundancy
Declaration access can be weaker
Declaration can hawve skatic modifier
Declaration can have Final modifier
IUnused method parameters
Actual method parameter is the same conskant
Unused method return value
Method returns the same value
Empty method
Redundant throws clause
= [¥] Local Code Analysis
[#] Constant conditions & exceptions
[] Unused assignment
[] Redundart bype cask
[] Local variable or parameter can be final
[¥] Declaration has javadoc problems
[] Deprecated API usage
[] equals(y and hashiCodel) not paired

Code Inspection 1.2

Code Inspection Control Option Panel

Now, if a user were to compile the error-riddled source code just previously mentioned, a
compiler would not throw an exception because the error it is not a Java error. You could deploy
this application at this point and it would work, but not 100% correctly. A Q&A team might not
find this error immediately and once they did find it, they would send it back to development and
the developer would have to spend more time debugging the application, eventually fixing it
after a lot of wasted (and costly) time.

This simple example of source code, of course, could be easily debugged manually without
much fanfare; however, in a project with hundreds or even thousands of classes, interfaces,
methods, and fields, would you want to look for such errors manually? Of course not! This is
why you simply fire up the Code Inspection tool to do this job for you.

.-:}

=

=]

b4 = ﬂ} KeyListenerExample.ipr
= s samples

Mame:

o ublic method void keyTyped(EeyEvent e)
ha o T KeyListener.Myl<eyListener. keyTypedikKeyEvent) B

{:’ Location:

b class MyKevlistener (samples.KevlListener)
=

> Froblem synopsis:

#* Condition keyCode == EeyEvent.VE_F1 at line 29 iz always false.

] Constant conditions & NPEs

Code Inspection 1.3
Code Inspection Output Control Pane for Constant Conditions and NPE analysis




Once the code inspection function has completed its various selected analyses, the code
inspection’s analyzed results will be viewable in an easy to view tree-like navigation window in
an output control panel as shown in figure Code Inspection 1.3. As noted previously, the Code
Inspection function will not only perform the above mentioned inspection as noted in the
example, but a multitude of various analyses that will dramatically help you reduce your chances
of introducing error ridden source code into your projects, not to mention it will help you
streamline your source code by ridding it of left-over development chaff.

What is Refactoring?

One of the most powerful features heaped upon developers and architects by divine providence
is the almighty power of refactoring! Yes, refactoring is great, but why is it great? Even more
so, what is refactoring? One of the industry’s best, Martin Fowler, described refactoring as:

“The process of changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure. It’s a disciplined way to clean up code
that minimizes the chances of introducing bugs.”’

This pleasant sounding paragraph pretty much sums up refactoring theory; however, in practice
if done incorrectly, you can really wreck havoc on your code. This is why IDEA comes fully
equipped with the most powerful refactoring tools available to date. Refactoring methods such
as Renaming, Extract Method, Change Method Signature, Extract Interface, Move, and more are
bundled with IDEA for more than 25 different refactoring methods in toto.

What this section of the book will therefore cover are brief introductions to many of the 25 plus
refactoring methods to give you a better understanding of when and why they are used and to see
how IDEA makes using them as easy as a clicking a few buttons.

1-  Martin Fowler, Refactoring: Improving the Design of Existing Code, ISBN # 0201485672 (Addison-Wesley).

Renaming

One of the most simple yet most used and useful refactoring methods integrated into IDEA is the
Renaming refactoring function. Renaming allows you to change the name of any package, class,
method, field or variable in a specific file or desired project. What is the reason for doing this?
Simple: to clean up your code. When naming methods, for example, a good programmer will
reveal the purpose of that method by its name as shown in figure Renaming 1.1.

Example 1.1:

class CarDatabase...
public String getCrTpMkCI();

Would be renamed to:

- public String @

getCarTypeMakeColor kisting Code, Martin Fowler



rb
That's a bit too strong.

rb
Don't use to much latin proverbs. It looks like you want to articulate your superiority

rb
as clicking

rb
Footnotes should be at the end of a page and not somewhere in the middle.

rb
Something got wrong with the layout here. It looks out of place


Renaming 1.1

Thus the renaming function allows you to change the name of that method and then
automatically finds and corrects all references to this element (in both the working class and the
rest of the entire project). As figure Renaming 1.2 shows, an easy to read prompt will ask you to
verify your changes — either by each individual instance or entire project.

public class extends JFrame implements Actionlistener, TextListener, Keylistener
JEutton button = null;

Textidrea textareal = null;
JButton button? = null:

public Booklet(String title) |
super (title]:
JPanel pane = (JPanel)
getContentPane () ;

button = new JButton("Ich mochte ein hier bhittel"):
bhutton. addictionlistener (thisg)

pane.add (button, BorderLayout. REST) ;

setiize (100, 100);

b

Find - Refactoring preview

v = |E Class Booklet to be renamed to BookletNewName
+ = C) Booklat
~_[=- References in code to class Booklet { 2 references in 1file )
- = (5] =default=
B =E = H Bookletjava
P& [i78., 5) Booklet window = new Booklet?"vet Anather Swing Application by David!y]

(78, 268) Booklet window = new Booklet{" et Another Swing Application by David!"),

Do Refactor || cancel |

Renaming 1.2

Once you have determined the appropriate items to refactor, and you have refactored them by

selecting the Do Refactor button, the concluding refactoring results are shown back into the
editor as in figure Renaming 1.3.

public class BDD}:lEtI-IEWI-IamEI extends JFrame
JEButton button = null:;
Texthirea textareal = null;
JButton button? = null:;

public EBookletNewName (3tring title) {
super (title):
JPanel pane = [JPanel)
getContentlane()

Renaming 1.3

Move

Along with the Rename function, IDEA’s Move refactoring feature is another straight forward
yet highly powerful and widely used refactoring method that allows you to correct, improve, or



transfer misplaced responsibilities in source code without a lot of hassle. It also enables you to
quickly move methods or static fields from one class into another, and in addition, you can also
move entire classes or even entire packages into other packages all by invoking IDEA’s Move
function. This is done in such an autonomic fashion, that it reduces your chances of introducing
bugs into your code to about null.

For example in figure Move 1.1, two Java class files (BookletEditor &
BookletInputField) shown in the project view are easily moved into a new location (or a
previously existing one) as shown in the “To package:” field and all references to these classes
within the entire project will be changed to accommodate such changes.

e src
= | introduce ariable public class Eookle
[=1 & o mowe
= s | classes
C ‘& BookletEditor

C ‘& BookletInputField

Brove x|

Move specified classes

Do -1 o oOn

Ta package: |master.|i|:u.5';.=stem| || |

[¥| Search in camments and strings [¥] Search in nan-java files

[ Preview usages to be changed | K | | cancel | | Help |

I Move 1.1

Once the move process has been completed, you will see that the two previously mentioned Java
class files have been moved from the “move” package into a new package called “master” as
shown in figure Move 1.2.

[=} s &
= | introducey ariable
[=1 = | masker
E- s lib
[=} & | syskem
C & BookletEditor
C ‘& BookletInputField

Move 1.2

As noted previously, in addition to moving classes between packages, you can move members of
a class into a new class. As shown in figure Move 1.3, simply point the caret to the member you
wish to move from the class Booklet, in this case getDescription () on line 14, and
invoke the Move refactoring function (you can right-click your mouse and select Refactor |
Move or press F6 on the keyboard).



& public class Eooklet {
7 A4 Booklet categories
g public =static final int ADVERTTSING = 0;
Q public static final int PROMOTTION = 1:
10 public static final int OVERTIER = 3;
11
12 private static final String AUTHOR WOED = "author":
13
14 = public static String geti)escriptinniﬁtring[] authors, String title, int category) {
15 StringBuffer buffer = mew StringbBuffer();
l& buffer.appendititle); buffer.append(", "1:
17 buffer.append(authors.length == 1 » AUTHOR RFORD : toPlural (AUTHOR RORD) ) ;
18 buffer.append(" category:"): buffer.append|{getCategory(category) )
13 return buffer.toicring();
20 3
2
22 El private static 5String getCategoryiint category) {
23 swatchicategory) |
24 case ADNVERTISTING: return "Rdvertising" ;
25 caze PRNOTION: return "Promotion” ;
26 case OVERVIERE return "Overview' ;
27 default: return "Unknown';
258 B
29 b
30
31 public static String toPlural (String word)
S
Move 1.3

Once the refactoring has been invoked, you will be shown a control dialog informing you of your
selection, and more importantly, a list of other members highlighted in blue which will be
required to be move along with your initial selection as shown in figure Move 1.4.

I} Move Members |

Move members From:
move.members, Booklet

To (Fully qualified name):
|mu:uve.mem|:uers.Bu:u:uldet0ld| || |

Members to be moved (skakic only) ~Wisibility
| Member | ® Asis
]t ADYERTISIMNG:ink )
[] fo%  PROMOTION:nt () Private
[0 fef  OVERVIEWSINE i) Package local
f LSkri
] fs & AUTHOR_WORD:String | | | | O Protected
[w] o gekDescription{authors: Skring[], ktle:String, category:ink):String -
[] = &  getCategory(category:ink):String () Public
[] o koPlural{word: Skring): String

[¥] Preview usages ko be changed | ok | | ancel | | Help |

Move 1.4

After the appropriate desired selections have been made, and the Move function has been
completed (including your verification of the members to be moved), a new class will then be



made in the newly mentioned location with your previously selected members to be move as

shown in figure Move 1.5.

g public class Booklet0ld]
1n private static fimal 3tring AUTHOR _WOFD = "author" ;
11
12 = public static 3tring getDescription(itring[] authors, 3tring title, int category) {
13 StringFuffer buffer = new StringBuffer():
14 buffer.append(title) r buffer.append(", "):
15 buffer.append{authors.length == 1 » AVTHOR RORD : toPlural (AUTHOR RORD) ) ;
la buffer.append(" category:"); buffer.append|getlCategory(category) ) ;
17 return buffer. toitringi)
15 3
el W
Z0 = private static String getCategory(int categqory) {
z1 sydtch(category) |
22 case Booklet  ADVERTISING: return "fdvertising"
B case Booklet. PRIVOTTON: return "Promotiom'
24 case Booklet. OVERTIERE return "Owverview" ;
25 default: return "Unknowm" ;
26 i
27 i
o
29 public static 3tring toPlural (String word)
Move 1.5

You can also move “inner” classes and make them “outer” classes with the Move refactoring
function. As shown in Move 1.6, the Move dialogue appears after the caret is placed on the
desired inner class to move (in this case class RequestProcessor on line 8) and the
Move refactoring function has been invoked.

After the Move refactoring procedure has been completed, a new class is will be born as shown

in figure Move 1.7.

4 public class Serwver {

g = SEE

=] # Thread processing responses to reguest

7 i

o] =] class RequestProcessor implements Funnahle

9 private Fedquest myBeguest:
s x|
1z Class name:
15 [requestProcessat| |
14
15 [ Pass outer class' instance as a parameter
17 |_ Pararmeker narme:
15 |server |
19 =
20 \‘ [¥] Preview usages to be changed | oK | | Cancel | | Help |
21

Move 1.6



rb
created


12 class PequestPrDcessur implements Furnnahle |

13 private Fedquest myRequest;

14 private 3erver server:

15

16 = public FequestProcessor(Jerwver server, Request request)] |

17 this.server = =Server;

14 myRequest = recquest:

— ' Move 1.7

Introduce Variable

Most of us eventually find ourselves in a situation where our code expressions begin to grow into
untamed beast, and as they become more and more robust, they become difficult to understand at
first glance (or on our second and third, too!) When this occasion arises, IDEA allows you to
initiate another cool refactoring function called Introduce Variable (also called Introduce
Explaining Variable). This function will alter complicated expressions (or any part of one) by
transforming them into a temporary variable with a name that expresses its function.

For example, figure Variable 1.1 is your typical run of the mill expression.

3 public class 3tringlUtil |

4 = public static 3tring toPlural (3tring word) @

5 if(word. length() == 0] return word;

&

7 if (word. chardt(word. lengthi() - 11 == 'x' || word.chardt(word. lengthi] - 1] == 's')]
g return word + "es";

9 } else 1f (word,chardt(word.lengthi)] - 1] == '¥'1 {

10 return word,substring(0, word.lengthi) - 1) + "ies":
11 } else !

12 return word + "=s"; |

13 3

14 L 1

Variable 1.1

You can see that this expression is a little messy; however, if you do not think so then watch how
IDEA makes it even clearer. As shown in figure Variable 1.2, the refactoring function Introduce
Variable is invoked on the expression word . charAt (word.length() - 1).


rb
This one is too wide. It looks unprofessional. Why not break the if at the || and have a better screenshot


3 public class 3tringlUtil §

4 = public static String toPlural (3tring word) { @

5 if(word.length() == 0] return word:

&

7 || word.chardt(word.lengthi{) - 1) == 's'
g return word + "es";

9 } else 1f (word.chardt(word.lengthi(] - 1] == '¥'1 {

1n return word.substring(0, word.lengthi{l - 1) + "ies":
11  else |

12 return word + "s":

13 3

14 L 3

Variable 1.2

As shown in figure Variable 1.3, the above mentioned complicated expression (and all of its
occurrences) was changed into the expression lastChar.

L w TS [ U BN OO 3

10
11
12
13
14
15

B

public class StringlUtil |

public static 3tring toPlural (3tring word) |
if(word. length() == 0) return word;
char lastChar = word.chardtiword. length()] - 1):
if(lastEharl== 'x' || lastlhar == 's') {
return word + "es";
} else 1f (lastlhar == '¥')] {
return word.substring(0, word.length() - 1] + "ies":
} else !

return word + "s";

Variable 1.3

Then, as a closer, we invoke introduce variable once again, this time on the expression
word.lenght () - 1 asshown in figure Variable 1.4.

WO =1 o s )

10
11
12
13
14
15
1a

public class Ztringltil {

B

public static 3tring toPlural (3tring word)
ifi{word. length() == 0] return word;

int lastCharIndex = word.lengthil - 1:
char lastChar = word.chardt(lastCharIndex) :

if(lastChar == 'm' || lastChar == 's'] {

return word + "es";
} else 1f [(lastChar == '¥'] {

return word.substringil, lastCharIndexb + "ies";
! else !

return word + "sg";:

Variable 1.4

Now, go back and look at figure Variable 1.1 and compare it to our refactored expression in
figure Variable 1.4. The former is a good hard numbered mathematical expression; the latter, a


rb
This one looks as bad as the previous one

rb
Take this away. It sounds bad.


nice and easy to read word story problem. If you were working on a much larger project, and
needed to find out what this expression did quickly, no doubt it would be the story problem and
not the numbers which informed you the quickest. Not to mention, you code simply looks better.

Extract Interface / Superclass

When the time comes to radically optimize both the code’s readability and its design, Ex¢ract
Interface is the perfect refactoring function to invoke. IDEA allows you to extract from classes
or public interfaces public methods or static final fields into a new, single public interface that
can be easily shared between multiple classes. This procedure removes the need to type
repetitive code or use multiple implementations of the same object. As shown in figure Extract
Interface 1.1, simply point the caret to a class or interface you wish to bundle into a new
interface, and then select Refactor | Extract Interface from the main menu.

import javax.swing.¥;
import java.awt.event.®:
import java.awt.®;

public class Booklet extends JFrame implements Acti onLIi.stener , TextListener, KeylListener {
JButton button = null;
Textdirea textareal = null;
JEutton button? = null;

Extract Interface 1.1

Figure Extract Interface 1.2 shows that once the refactoring procedure has been called, IDEA
launches a popup console with various options allowing you to package the chosen interface or
class, including their relevant methods and other objects, into the new interface.

b iEiractinierince L_']
Esfract interface frarm:
Booklet

Interface name:
|new|nterface |

Packane:

Members to Form Interface

I)  exends ActionListener
L) exends TexListener

L) exends KeyListenar

mj +1

m) 1

E’JTI

mjt1

mj +.1

Oo0oODE EIE

| (0174 || Cancel || Help |

Extract Interface 1.2

Once the refactoring procedure has been completed, IDEA will then prompt you for your
permission to search the usages of the parent class to replace old usages with the new and
improved ones as shown in figure Extract Interface 1.3. Like other refactoring functions in


rb
your

rb
Like for other


IDEA, a tree-view will be shown allowing you to approve your individual selections before
making the changes final.

import javax.swing. *;
import java.awt.ewvent.*:
import java.awt.¥;

public class EBooklet extends JFrame implements newlnterface I-[
JEButton button = null:;
Texthrea textareal = null; |} Sourel) IEADES: d
JButton button? = null:
Interface newlnterface has heen successfully created.
@ At this stage, IDEA can analze usages of Booklet
and replace them with usages ofthe interface where possible,
Do you wantto proceed?

public Booklet(String title)
super (title) ;

TPanel pane = (IPanel) [ Previews usages to he changed
getContentPanel) ;

Extract Interface 1.3

An alternative to using Extract Interface is, depending on your situation of course, to invoke the
refactoring function Extract Superclass. This function works in a similar fashion: You notice
that you have two classes that basically contain the same code, and you are tired of updating the
same bugs twice or improving the code in more than two places (and sometimes in 100s of
places), and you want to eliminate this nuisance. IDEA will help you by automating the process
of removing the common features used by varying classes, and package the contents into one
shareable superclass.

Extract Method

When one is faced with a block of characters that reads more like encryption than actual code,
those using IDEA know they are fortunate to have the power to bring their coding universe back
into order! The Extract Method refactoring function is one such enforcer of order that lets you
extract code from one of these chaotic conglomerates of code and creates for you a new,
unscathed and pristine method that is easily identifiable. In laymen terms, this means you can
take a large method, and divide it up into multiple methods that are well defined and clearly
marked — and — they are easily usable by other methods, because they are well defined.

For example, as shown in figure Extract Method 1.1, the bookletToRename method and its
contents are a large cluttered mess. To fix this, just place the caret on the method you wish to
extract a new and cleaner method from, and invoke the Extract Method refactoring function.

& public class BookletLibrary!
7 Arraylizst myEBooklets;
g
9 = public wvoid rename(3tring oldWame, String hewlame)] !
10
11 : Booklet hnnkletﬁnRename = null;
12 for (int i = 0; i < myBooklet=.size|); i++) {
13 Booklet booklet = [Booklet) myBooklets.get(i):;
14 if(booklet.getlane () .equalzs(oldane) ] {
15 hookletToRenamne = booklet;
16 hreak:
17 1
18 ; Extract Method 1.1

Extract cleaner methods from cluttered methods


rb
fixing the same bugs

rb
It more a moving of features to other classes than a removing.


As shown in figure Extract Method 1.2, a new method has been created with the bulk of the
“messy” contents being referenced somewhere else. Now the new method is easily identifiable
and easily referenced by other methods and classes.

& public class BookletLibrary{
7 Arravylizt myEBooklets;
g
9 = public woid rename(3tring oldiame, String hewlame)] !
10
11 Booklet bookletToRehame = Ejnnkletﬂew}[ethnd(nldﬂame]:
12 Extract Method 1.2
Inline Method

The refactoring function /nline Method is the opposite of Extract Method. Then why would you
want to use it, especially after the fact that we just told you how great the extract method
function was? Simple. Sometimes you run into too many delegation indirections that clutter
code and are simply confusing, so using inline method removes needless delegation and creates a
responsible method! As shown in figure /nline Method 1.1, you see that there is some un-needed
delegation in the get EnteredName method.

7 public class BookletEditor extends JDialog
=] JTextField nyNameField;
9 JEutton myOEButton;
10
11 = private String gEtJ:ZnteredI-IamE(] {
12 return myHameField. getText(]
13 1
14
15 = public String getBookletMame ()
l& return getEnterediName() ;
17 1
s
19 = private woid wvalidateOEButton() |
20 myDEButton. zetEnabled (getEnteredNane (). lengthi)] > 01:
22 L ; Inline Method 1.1

Just move the caret to the method you want to inline, in this case the getEnteredName
method, and invoke the inline method function to remove the indirection chaff.

& public class EookletEditor extends JDialog |
T JTextField myNameField:

g JEutton nylEButton;

a

10 = public String gEtJ:BDD}:lEtI-IamE(] {

11 return myHameField. getText()

1z 1

13

14 = private void walidateOEButton() |

15 mylEButton. setEnabled (myHameField. getText(). length() > 0]
16 3

= Inline Method 1.2



rb
after we

rb
is


As shown in figure Inline Method 1.2, after the inline refactoring process has been completed,
the needless indirection has been removed, the code has been streamlined, and no bugs have
been introduced.

Just to note, a good idea to keep in mind is that you can use inline method as a precursor to
utilizing the extract method function. What?!? Simply put, sometimes there are methods that
are simply factored in a sloppy manner, and the quickest way to fix them is first to inline the
sloppy code into one tidy method, and then to initiate extract method on this new and improved
block of code to create finely tuned smaller methods that are much more friendly to share and
easily identified.

Encapsulate Field

If you enjoyed playing hide-and-go-seek when you were a kid, then you are going to love the
refactoring function Encapsulate Field. This function is utilized best when you want to make
data in one object private and inaccessible from other public objects. In other words, you hide
the contents of one object from other objects that may attempt to alter the former’s behavior. As
shown in figure Encapsulate Field 1.1, you see that you simply point the caret at a targeted
public field, select encapsulate field, and you are prompted with a relevant control console. In
figure Encapsulate Field 1.2, once the Encapsulate Field has been invoked, it helps you create
the appropriate getter and setter methods which hide the initial content of any selected field.

public class Eooklet extends JFrame
public Textirea textareal:
public JBut}:n:nn hutton;
public JEutton button?:

Encapsulate Field 1.1

Select the public field you wish to encapsulate


rb
"Encapsulate Field" refactoring


@ Enespsyliia Flalids - Hooilat Lj
Fields to Encapsulate
Field | Getter Setter |
A
[v]| £) % button:JButton getButton setButton
B
Encapsulate Options
[w] Getaccess [¥] Use accessors even when field is accessible
[¥] Setaccess
Encapsulated Fields' Yisibility Accessors Yisibility
% Private ® Public
) Package local ) Protected
) Protected ) Package local
0 Asis ) Private
[v] Preview usages to he changed QK | | el | ‘ Help
Encapsulate Field 1.

IDEA has prompts you with an advanced multi-functional control
panel to personalize your refactoring selection

Change Method Signature

Change Method Signature is a refactoring method that encompasses a multitude of options for
making a number of cosmetic and design changes to any desired method signature. IDEA
enables you to initiate the following changes:

Change method name
Add parameter
Remove parameter
Reorder parameters
Change return type
Change parameter type

It is not our intention to cover these specific functions in greater detail in this overview, because
by their names alone their functions are pretty obvious. Some of these above mentioned changes
can be read in more detail in Martin Fowler’s book on Refactoring previously mentioned in the
Refactoring introduction page.

J2EE Introduction

[This section is being revamped a lot — the more feedback, the better!]

Creating component based J2EE modules has become the de facto standard in today’s highly
competitive, quickly changing and complex market of B2B, B2C, and B2E (Business-to-
Everything else)! Not long ago, an Ivy League professor “proved” with a mathematical theorem



that time equals money. Whether or not this theorem proved academically correct is irrelevant,
because it has never taken a professor to prove that time does indeed equal money in the business
world. Therefore, picking the right tools for development can, literally, make the difference
between making a multi-million dollar deadline and sinking a company into oblivion.

In any case, whether you are a lone developer or a large corporate development team, it is
universally assumed that when you start a project, you also have the intent on finishing it in
some sort of pre-determined time period. Working with J2EE is no different. EJB, JSP, and
Servlets are the bedrock of J2EE, with XML and HTML acting as mortar. IDEA gives you the
power to utilize, organize, development, and launch this compendium of technologies in an
intelligent, fast, efficient, and timely fashion.

IDEA doesn’t pull any punches when it comes to J2EE development:

Code Completion for JSP and XML

Syntax and Error Highlighting in JSP/XML and EJB code
JSP tag library support

XML DTD / Schema completion / validation support
EJB Setup / Create Integration Support, Code Assistance
EJB Refactoring support

JSP Development Support

JSPs (JavaServer Pages) are yet another integral part of J2EE development. If you have never
implemented or coded JSPs before, here is a quick run down: JSPs allow web developers and
designers to quickly deploy and easily maintain, information-rich, dynamic web content that
leverages with an existing business infrastructure.

JSPs can be used to build interfaces to e-commerce back-ends, intranet based project
management and development tracking tools, and pretty much anything else that calls upon you
to utilize Java packages, a HTML (or hybrids) based browser, and database connections. Of
course, this is a quick and simplistic description of the immense and diverse functional
capabilities that JSPs possess; however the premise should be quite clear: JSPs are invaluable in
an enterprise development environment.

Having said this, if you are looking to utilize your limited time and resources to maximum
efficiency, not to mention code for future scalability, then IDEA is the ideal development tool for
JSP development. IDEA packs JSP development tool features more advanced than Batman’s
crime-fighting utility belt: JSP tag library and attribute code completion, code refactoring, error
high-lighting, debugging, and even JSP deployment capabilities.

IDEA’s JSP code completion feature works in a similar fashion as the standard Java code
completion feature. IDEA will automatically complete code when invoked to do so. For
example, as shown in figure JSP Development 1.1, once you begin to code JSP tags, you simply
invoke the code completion function — by selecting CTRL + Space — and a library of selections
will appear.



< /head
<hody>
<jisp:|
fallback eryvationaction. jsp™ method="get ">
en" name="tripId" wvalue="-%= request.getParameter("tripId")] %=">
leBloc" =

forward
getProperty

include
Name : < A=

param .
name="firstHame" =< -

params
plugin

setProperty ame : < St

uzeBean name="1astHame" =< /ftd>
< /tr>

“tr JSP 1.1
JSP attribute completion

Once the selected attribute has been chosen from the automated attribute list, IDEA will
automatically complete this JSP tag by filling in all static data. As shown in figure JSP
Development 1.2, any part of the tag that allows for multiple selections of data input, IDEA will
intelligently offer more attributes based upon project content to automatically complete this
dynamic data.

< /head:
<bhody>=
=Jspiinclude page="" f-

<form action='{t) header. jsp pil=" et "
<input t}pe="]tﬂ home. 3p <%= request.getParameter ("tripId" ] %-">
<table class=' images
822 reservationaction.jsp
<td}F?tﬂ tripdetail.jsp
<td=<3
</t VEE - INF
<tr>-

<td-Last Name:< td-

<tdx<input name="lastHame" </ td-
< ity
<tr> JSP Development

1.2
Dynamic tag attributes automatically completed

In addition to basic attribute completion, IDEA also enables developers with the power to
quickly add tag library selections, including TEI tags, at the stroke of a key.

XML Development Features



XML needs no introduction, or it shouldn’t away. If you have ever done any extensive
programming in Java, you have probably run into and used XML, if for anything to create Ant
build.xml files for rapid application deployment. For more extensive J2EE development,
XML is utilized for multiple purposes: B2B (EDI, SOAP), Web service descriptors (WSDL),
and even automated discovery and transaction services (UDDI, UNSPSC, NIC).

Whatever the case, if you are going to be deploying any Java applications coupled with XML,
IDEA is going to dramatically enhance your ability to crank out material at a faster and more
efficient rate. How is that you might ask? Simple: Not only is IDEA’s editor super intelligent
for Java development, it also enables you to meet the demands of XML coding with intelligent
development smart features.

For example, IDEA allows you to quickly edit XML documents that support both DTD and
Schema validation. As shown in figure XML Features 1.1, IDEA can digest any given DTD’s
specification and automatically include these special attributes into the editor’s intelligent XML
attribute completion function.

a = <enterprise-heans>
10 = <5ession E:
11 n-The Rdmin OPC Facade< /description-
12 —_— >0PCRdAmi nFacadeEdB= /displ ay-name>
13 = PChdminFacadeEJB-< /e jb-name:-
14 <home>Ccom. sun. j2ee.blueprints. opc . admin. ejh. 0PChdmi nF acadeHome-. / Toime -
[ 15 <remotercom. sun.j2ee.blueprints.opc. admin, ejb. 0PCRAdminFacade< /remote- YML 1.1

DTD attribute validation tag

In figure XML 1.2, schema specifications, like DTDs, can be appropriated by IDEA’s intelligent
editor for faster and more accurate automated attribute-tag completion.

1 <?xml wversion='1.0' encoding='UTF-§'2?>
2 Fl<xs:schema targetHamespace="http: f . wi.org /2001 2ML5chema” blockDefault="H#all"
3 | <xs:aL
4 E x3:annotation
5 = x3:iattribute -
3 xs:attributeGroup : Id: XMLSchema.xsd, v 1.49 2001710725 10:25:41 ht Exp
7 FALL Z TErS : Id: datatypes.xsd, v 1.53 2001710725 10:26:05 ht Exp
g \‘ < /xz:documentations
9 L </x5:annotation>-
XML 1.2

Schema tag-attribute validation

In addition to the aforementioned features, IDEA also incorporates a XML error high-lighting
function. As shown in figure XML 1.3, if an error is made in the XML code, IDEA will color-
code the errors making them easy to find and fix.

EJB Integration

For those developers who are looking for a set of tools to aid you in much more complicated,
robust, and over all time consuming enterprise centered development projects — or — in other
words, you need to crank out a plethora of EJBs under a dead-line, or simply want to create EJBs
that are flexible, scalable, and that work quickly, then IDEA is what the doctor would order.


rb
anyway.

rb
and smart development features.


IDEA has an integrated error high-lighting function for EJBs. Red is the magic color: any error
that makes deploying the EJB impossible will be colored blood red, including compatibility
errors and errors in any of the deployment descriptors.

Collaboration Tools

If you have read through the overview up to this point, it is probably safe for us to assume that
you are now pretty familiar with IDEA and have a grasp of the firepower it packs in regards to
the multitude of powerful features and functions that in short, among a gazillion other things,
hastens development, cleans up your code, and increases productivity. However, one should
never expect IDEA to rest on its laurels, because being content is about the last thing the makers
of IDEA have on their minds.

IDEA has evolved into the kind of IDE that simply cannot avoid incorporating a good thing, and
therefore, IDEA has been forged to integrate seamlessly with some of today’s most popular and
most important open source development tools the world has come to know.

This section will briefly cover these various tools and point you in the right direction in regards
to where you can download them.

Amendum:

JUnit: http://www.junit.org

Jakarta Ant: http://jakarta.apache.org/ant/index.html

Jikes: http://oss.software.ibm.com/developerworks/opensource/jikes/

Visual SourceSafe: http://msdn.microsoft.com/ssafe/

CVS Integration

IDEA not only helps you develop and design code quicker, more intelligently, and with greater
ease -- it also helps you manage and organize your projects for greater work efficiency. IDEA
comes equipped with a powerful CVS (Concurrent Version System) to help you manage
revisions to any project’s source code files. As shown in figure CVS Integration 1.1, IDEA
packs a user friendly CVS administration console to help you immediately begin tracking and
backing up your documents and source code.



[J Project Properties - ¥C5 Suppork El
[ @1 ¥CS Support: | Vs -

- VS configuration

Paths
Bl | General | Advanced
Mol Path ko CvS client:
Compiler | " =]
;éb -CY5 Rots
RunDebug add. .,
5
Debugger
<
I'. | Clear Password
Local YC5

Javaloc

€

Miscellaneous

a4 || Cancel || Apply

d

Help

CVS Integration 1.1

CVS set-up administration console

Once the CVS integration feature has been enabled, simply fill in the requisite fields in the set-up
administration console and then apply your settings. After the console has been set up, you will
see “CVS” highlighted on the tab on the bottom feature bar shown in figure CVS Integration 1.2,
which indicates that the CVS is now available for use.

| i File Yiew | » Consale |

o] | = ChideatSS\Projects
. 11?1 Builds
=] 1071 src
(=] EA[?] Examples.ipr
&) EA[?] Examples.ivs

EA[?] OverviewDema,ipr
@ EA[?] overviewDemo.ivws
L Cwe = 6 TODO _

= CVS Integration 1.2

Easy to read tree-view of CVS submitted files



Jakarta Ant

If you are a Java developer and you have never used Jakarta Ant (god forbid you haven’t heard
about it), it is probably a good time for you to get familiar with this open source, freely
downloadable Java based build tool. After all, would you really enjoy repeating the same
remedial time-consuming task day after day if you could avoid it? We didn’t think so, and that is
why IDEA has integrated Ant. Ant is one of the most popular and widely used build tools on the
planet, and when used along with IDEA, development and deployment time respectively
becomes almost frighteningly too easy. Take it for a test run and see for yourself.

Open a project in IDEA, and then open the Ant Build panel shown in figure Jakarta Ant 1.1.

Booklet java t
* To change template for new class use g
# Code Style | Class Templates options (Tocls | IDE Options). §
f/ a.

@

il

import javax.swing. *; :__n;
import java.awt.event.?®; =
import java.awt.®; %
public class EBooklet extends JFrame implements Actionlistener, Textlistener, Kevlistener { o
public Textdrea textareal: <
public JEutton button; E
public JButton button?: =z

Jakarta Ant 1.1

Select the Ant Build panel which is by default set on the right-side of the IDE window

As shown in figure Jakarta Ant 1.2, once the Ant Build panel is open, simply select the + menu
button and add the build file you want to initiate your build process.

Ant Build

=The list of build files is ermpty=

J8puU BLLIWOD F

i@ Sellae At Huild Fils

.ﬂ.‘
e
=l
@ | ]
=T 4 JI [=3
1629
1 IDEA25
£ 4 IDEA 3.0

1 Ariadna

1 BlindCode

= 4 Booklet
1 build
1 dist
1 ste

AyoueiaiH g

1 dawvid
L1 HellowWindow
1 HomeWark
1 JavaBook
) Money
1 MyLookDema
1 optimizelmponts
1 whiteS

L1 IDEAZA

0 jdkt1.3.1_01

1]

| 0K | | Cancel

Jakarta Ant 1.2
Selecting the desired Ant build file




As shown in figure Jakarta Ant 1.3, once you have selected your build file (see figure Jakarta
Ant 1.2), a navigation window will appear outlining the build file’s sequence of events that it will
initiate during the build process. To initiate the build process, just select the run menu item. Ant

will begin its build process, and if any errors occur, IDEA’s event window will display a detailed
log of the final build results.

Ant Build

r-r[glEEe7
B ¥ BookBuilder

b clean

} prepare

¥ compile

b odist

18pUELLICD) Z

Jakarta Ant 1.3

View of selected build file’s contents

As shown previously in prior sections, IDEA’s standard tree-navigation window shows you the
error messages in its output if any errors are thrown. In figure Jakarta Ant 1.4, you can see these

throw error messages and quickly navigate to their respective locations in the source code, make
corrections, and start the build process again.

Messages - Ant Build (BookBuilder)

BBy P Target: clean
oz F Target: prepare

|2 P Target: compile
= = & Tagk javac
4 % 0(?3, 1) CAMIIDEA 3.0Bookletbuild xml: 73 CUIDUDEA 3.MBoaklet§feny. SYMBIAMN_HOME} not found.
) El (1] (73, 1) CAUlibIDEA 3.0MBooklebbuild xml: 73 CAOIBUDEA 3.00Boakletd{eny SyMBIAN_HOME} not faund.
= 0|(?3, 1) CAUIBIDEA 3.0Booklebbuild xml 7 3 CUlIMIDEA 3.0\ Booklet${eny. SYMBIAN_HOME} nntfaund.|

Build completed with 3 errars and 1 warning. Time: 1 s
Jakarta Ant 1.4
JUnit

Those who like to do things right the first time, will no doubt appreciate JUnit’s integration into
IDEA. JUnit is an open source testing framework for Java that provides users with a simple yet
powerful way to express a written code’s intention and then verify that code’s behavior
according to its associated intention. This is done by initiating unit tests (each test is normally
associated with a specific class), and then testing the output of each unit.

This is done to ensure that all of your objects are doing what they are supposed to be doing.
When each object does what it is supposed to be doing, then you won’t have to waste time later
debugging. It is a pretty straight forward philosophy.



It is for this highly practical (and rather obvious) reason that IDEA has integrated JUnit. You
can run unit test directly from IDEA controlled by an easy to configure JUnit control panel. As
shown in figure JUnit 1.1, you can easily run a unit test from IDEA’s tool bar menu. You just
simply have to invoke a test case method near your intended target object and the results of the
test will be visible in the output window.

SN Tools Window  Help

B Run Shift+F10

i Debug Shift+F &
JUlnit Tests..

& Togole Breakpaoint Crl+F8
Add Method Breakpoint...
. ‘Wienw Breakpoints Ctrl+Shift+F 8
JUnit 1.1
Jikes

If you require a Java compiler with a little more juice and packs the compilation speed of a
super-sonic jet, then Jikes is the complier you need to use. Jikes is a Java source to bytcode
compiler written in C++ that starts and compiles faster than your standard javac compiler.
However, this open source IBM production is noted not just for its speed, but also because it has
the uncanny ability to suggest alternative suggestions to misspelled identifiers and it is equipped
with an incremental compiling feature along with an automatic makefile generation function.
This is a jet that comes fully-armed!

If you want to test drive Jikes through IDEA, you won’t find setting it up a problem. Since Jikes
is delivered together with IDEA, all you need to do is simply change the Compiler properties to
you liking, and set Jikes as your active compiler. As shown in figure Jikes 1.1, the control panel
is pretty straight forward.


rb
It is not delivered with IDEA in the latest builds. You have to download it yourself and IDEA can then use it.


&= Paths

£3 Campiler
& Debugger
i RuniDebug
Lacal WCS

T CVS

@ SourceSafe
& JavaDoc
Wieh

EJB
Mizcellaneous

I} Miyjaet Fruparijas - Coppuilds

Exclude fram Compile

Fath | Recursively -
Add Directary...
Add File...

Javac (actived | Jikes

[v] Generate debugging info

[vl Repart uses of depracated features
[_] Generate no warnings

[] Generate make file dependencies
[_] Do full dependence check

[ Campile in incremental made
Additional Jikes command line parameters:

Set Active

=

[C1 Compile in background  [v Synchronize ouput directory

0K

|| Gancel || Apply

Compiler control console

Visual SourceSafe

Jikes 1.1

When multiple people form a work group with specific goals in mind, regardless of the

endeavor, their success nearly always depends on their ability to communicate and work together
in a concerted and effective effort to achieve those common goals. When this scenario is applied
to the development world, we see that projects are completed timely and efficiently when project
managers, developers, and other essential parts of these groups are well informed of each other’s

progress.

This is why IDEA was developed to be easily integrated with Microsoft’s Visual SourceSafe, an

industry leading document management and versioning control system application.

As shown in figure Visual SourceSafe 1.1, IDEA incorporates an easy to use and set up
SourceSafe control panel allowing you to quickly set up and begin to utilize your SourceSafe
installation within minutes.



4 - o C. Gty A
@ Prujaet Mronapiiss - Sulrestifs L]

? Paths. [¥] Enable SourceSafe integration @
£ compiler

& Debugger General |Advanced

#l Run/Debuy ; )
Local vCS Fath to V5SS client (ss exe):

o ovE | -]
@ SourceSafe Fath to Y55 configuration file (srcsafe.ini):

& JavaDoc

Weh | " |

EJB UUser name: | Password: |
Miscellaneous

Woarking Directories
W33 Project | Working Directory

Add

Help [o]%¢ || Cancel H Apply

Visual SourceSafe 1.1

Open API

Not only is IDEA equipped with the development features mentioned previously in this book,
but IDEA has also launched an Open API initiative that allows third party developers to
seamlessly integrate their own tools into IDEA. Therefore, there is a good chance that if IDEA
doesn’t have a standard feature you would like to utilize, it will probably be coming in the near
future.

If you are a third party developer, you will be happy to know that your application’s functions
will be able to be called directly from IDEA. In addition, you will be able to incorporate a
number of IDEA’s features directly into your own application. From a user perspective, this
Open API is going to make IDEA more versatile, because once you have IDEA, you will have
access to a whole new “eco-system” of development tools that accommodate and enhance
IDEA’s already second-to-none capabilities.

IDEA users are encouraged to check out: www.intellij.org. Here you can find, among other
things, a large and growing list of the newest plug-ins for IDEA, most of which are free to the
public and open source.



rb
Add some other screenshots from other OSes - Linux and OSX - with the IDEA look and feel and with the native look and feels of the OSes to make clear that IDEA is not only a Windows product.





